• Zhu, Y., Xie, J., Huang, F. & Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. 727, 138704 (2020).

    Article 

    Google Scholar
     

  • Bauwens, M. et al. Impact of Coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 47, e2020GL087978 (2020).

    Article 

    Google Scholar
     

  • Forster, P. M. et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang 10, 913–919 (2020).

    Article 

    Google Scholar
     

  • Samani, P., García-Velásquez, C., Fleury, P. & der Meer, Y. The impact of the COVID-19 outbreak on climate change and air quality: four country case studies. Glob. Sustainability 4, 1–15 (2021).

    Article 

    Google Scholar
     

  • Evangeliou, N. et al. Changes in black carbon emissions over Europe due to COVID-19 lockdowns. Atmos. Chem. Phys. 21, 2675–2692 (2021).

    Article 

    Google Scholar
     

  • Le Quéré, C. et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang 10, 647–653 (2020).

    Article 

    Google Scholar
     

  • Turner, A. J. et al. Observed impacts of COVID-19 on urban CO2 emissions. Geophys. Res. Lett. 47, e2020GL090037 (2020).


    Google Scholar
     

  • Jones, C. D. et al. The climate response to emissions reductions due to COVID-19: initial results from CovidMIP. Geophys. Res. Lett. 48, e2020GL091883 (2021).


    Google Scholar
     

  • Sugawara, H. et al. Anthropogenic CO2 emissions changes in an urban area of Tokyo, Japan, due to the COVID-19 pandemic: a case study during the state of emergency in April–May 2020. Geophys. Res. Lett. 48, e2021GL092600 (2021).

    Article 

    Google Scholar
     

  • Bertram, C. et al. COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nat. Clim. Chang 11, 193–196 (2021).

    Article 

    Google Scholar
     

  • Friedlingstein, P. et al. Global Carbon Budget 2021. Earth Syst. Sci. Data Discuss 14, 1917–2005. https://doi.org/10.5194/essd-2021-386] (2022).

  • Parida, B. R. et al. Impact of COVID-19 induced lockdown on land surface temperature, aerosol, and urban heat in Europe and North America. Sustain. Cities Soc. 75, 103336 (2021).

    Article 

    Google Scholar
     

  • Chakraborty, T. C., Sarangi, C. & Lee, X. Reduction in human activity can enhance the urban heat island: insights from the COVID-19 lockdown. Environ. Res. Lett. 16, 054060 (2021).

    Article 

    Google Scholar
     

  • Oke, T. R., Mills, G., Christen, A. & Voogt, J. A. Urban Climates. (Cambridge Univ. Press, Cambridge, 2017).

    Book 

    Google Scholar
     

  • Fujibe, F. Temperature anomaly in the Tokyo Metropolitan Area during the COVID-19 (coronavirus) self-restraint period. Sci. Online Lett. Atmosphere 16, 175–179 (2020).


    Google Scholar
     

  • Nakajima, K., Takane, Y., Kikegawa, Y., Furuta, Y. & Takamatsu, H. Human behaviour change and its impact on urban climate: Restrictions with the G20 Osaka Summit and COVID-19 outbreak. Urban Clim. 35, 100728 (2021).

    Article 

    Google Scholar
     

  • Liu, Z. et al. Urban heat islands significantly reduced by COVID-19 lockdown. Geophys. Res. Lett. 49, e2021GL096842 (2022).


    Google Scholar
     

  • Kimura, F. & Takahashi, S. The effects of land-use and anthropogenic heating on the surface temperature in the Tokyo Metropolitan area: a numerical experiment. Atmos. Environ. 25, 155–164 (1991).

    Article 

    Google Scholar
     

  • Ichinose, T., Shimodozono, K. & Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33, 3897–3909 (1999).

    Article 

    Google Scholar
     

  • Ohashi, Y. et al. Influence of air-conditioning waaste heat on air temperature in Tokyo during summer: numerical experiments using an urban canopy model coupled with a building energy model. J. Appl Meteorol. Climatol. 46, 66–81 (2007).

    Article 

    Google Scholar
     

  • De Munck, C. et al. How much can air conditioning increase air temperatures for a city like Paris, France? Int J. Climatol. 33, 210–227 (2013).

    Article 

    Google Scholar
     

  • Salamanca, F., Georgescu, M., Mahalov, A., Moustaoui, M. & Wang, M. Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos. 119, 5949–5965 (2014).

    Article 

    Google Scholar
     

  • Takane, Y. et al. A climatological validation of urban air temperature and electricity demand simulated by a regional climate model coupled with an urban canopy model and a building energy model in an Asian megacity. Int J. Climatol. 37, 1035–1052 (2017).

    Article 

    Google Scholar
     

  • Wang, Y., Li, Y., Sabatino, S., Di Martilli, A. & Chan, P. W. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 13, 034015 (2018).

    Article 

    Google Scholar
     

  • Xu, X. et al. Using WRF-Urban to assess summertime air conditioning electric loads and their impacts on urban weather in Beijing. J. Geophys. Res. Atmos. 123, 2475–2490 (2018).

    Article 

    Google Scholar
     

  • Takane, Y., Kikegawa, Y., Hara, M. & Grimmond, C. S. B. Urban warming and future air-conditioning use in an Asian megacity: importance of positive feedback. NPJ Clim. Atmos. Sci. 2, 39 (2019).

    Article 

    Google Scholar
     

  • IPCC. AR6 Climate Change 2021: The Physical Science Basis (2021).

  • Kusaka, H., Kondo, H., Kikegawa, Y. & Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound. Layer. Meteorol. 101, 329–358 (2001).

    Article 

    Google Scholar
     

  • Kikegawa, Y., Genchi, Y., Yoshikado, H. & Kondo, H. Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings’ energy-demands. Appl. Energy 76, 449–466 (2003).

    Article 

    Google Scholar
     

  • Salamanca, F., Krpo, A., Martilli, A. & Clappier, A. A new building energy model coupled with an urban canopy parameterization for urban climate simulations—part I. formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99, 331 (2010).

    Article 

    Google Scholar
     

  • Salamanca, F. & Martilli, A. A new Building Energy Model coupled with an Urban Canopy Parameterization for urban climate simulations—part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol. 99, 345 (2010).

    Article 

    Google Scholar
     

  • United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2014 Revision (ST/ESA/SER.A/366) (2015).

  • Oleson, K. Contrasts between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Clim. 25, 1390–1412 (2012).

    Article 

    Google Scholar
     

  • Kusaka, H., Hara, M. & Takane, Y. Urban climate projection by the WRF model at 3–km grid increment: dynamical downscaling and predicting heat stress in the 2070’s August for Tokyo, Osaka, and Nagoya. J. Meteorol. Soc. Jpn. 90B, 47–64 (2012).

    Article 

    Google Scholar
     

  • Georgescu, M., Moustaoui, M., Mahalov, A. & Dudhia, J. Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Clim. Chang 3, 37–41 (2013).

    Article 

    Google Scholar
     

  • Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960-2009). NPJ Clim. Atmos. Sci. 1, 32 (2018).

    Article 

    Google Scholar
     

  • Krayenhoff, E. S., Moustaoui, M., Broadbent, A. M., Gupta, V. & Georgescu, M. Diurnal interaction between urban expansion, climate change and adaptation in US cities. Nat. Clim. Chang 8, 1097–1103 (2018).

    Article 

    Google Scholar
     

  • Takane, Y., Ohashi, Y., Grimmond, C. S. B., Hara, M. & Kikegawa, Y. Asian megacity heat stress under future climate scenarios: impact of air-conditioning feedback. Environ. Res. Commun. 2, 015004 (2021).

    Article 

    Google Scholar
     

  • Georgescu, M., Morefield, P. E., Bierwagen, B. G. & Weaver, C. P. Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl Acad. Sci. USA. 111, 2909–2914 (2014).

    Article 

    Google Scholar
     

  • Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2, 166–181 (2021).

    Article 

    Google Scholar
     

  • Fujibe, F. Weekday-weekend differences of urban climates Part 1: temporal variation of air temperature. J. Meteorol. Soc. Jpn. 65, 923–929 (1987).

    Article 

    Google Scholar
     

  • Fujibe, F. Day-of-the-week variations of urban temperature and their long-term trends in Japan. Theor. Appl. Climatol. 104, 393–401 (2010).

    Article 

    Google Scholar
     

  • Ohashi, Y. et al. Impact of seasonal variations in weekday electricity use on urban air temperature observed in Osaka, Japan. Q J. R. Meteorol. Soc. 142, 971–982 (2016).

    Article 

    Google Scholar
     

  • Dou, J. & Miao, S. Impact of mass human migration during Chinese New Year on Beijing urban heat island. Int J. Climatol. 37, 4199–4210 (2017).

    Article 

    Google Scholar
     

  • Adachi, S. et al. Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo Metropolitan Area. J. Appl Meteorol. Climatol. 53, 1886–1900 (2014).

    Article 

    Google Scholar
     

  • Kusaka, H., Suzuki-Parker, A., Aoyagi, T., Adachi, S. A. & Yamagata, Y. Assessment of RCM and urban scenarios uncertainties in the climate projections for August in the 2050s in Tokyo. Clim. Change 137, 427–438 (2016).

    Article 

    Google Scholar
     

  • Bäumer, D. & Vogel, B. An unexpected pattern of distinct weekly periodicities in climatological variables in Germany. Geophys. Res. Lett. 34, L03819 (2007).

    Article 

    Google Scholar
     

  • Earl, N., Simmonds, I. & Tappe, N. Weekly cycles in peak time temperatures and urban heat island intensity. Environ. Res. Lett. 11, 074003 (2016).

    Article 

    Google Scholar
     

  • Kikegawa, Y., Nakajima, K., Takane, Y., Ohashi, Y. & Ihara, T. A quantification of classic but unquantified positive feedback effects in the urban-building-energy-climate system. Appl. Energy 307, 118227 (2022).

    Article 

    Google Scholar
     

  • Wu, L.-Y., Zhang, J.-Y. & Shi, C.-X. Mass human migration and the urban heat iisland during the Chinese new year holiday: a case study in Harbin city, Northeast China. Atmos. Ocean. Sci. Lett. 8, 63–66 (2015).

    Article 

    Google Scholar
     

  • Zhang, J., Wu, L., Yuan, F., Dou, J. & Miao, S. Mass human migration and Beijing’s urban heat island during the Chinese New Year holiday. Sci. Bull. 60, 1038–1041 (2015).

    Article 

    Google Scholar
     

  • Zhang, J. & Wu, L. Influence of human population movements on urban climate of Beijing during the Chinese New Year holiday. Sci. Rep. 7, 45813 (2017).

    Article 

    Google Scholar
     

  • Takane, Y. & Kusaka, H. Formation mechanisms of the extreme high surface air temperature of 40.9°C observed in the Tokyo metropolitan area: considerations of dynamic foehn and foehnlike wind. J. Appl Meteorol. Climatol. 50, 1827–1841 (2011).

    Article 

    Google Scholar
     

  • Takane, Y., Kusaka, H. & Kondo, H. Climatological study on mesoscale extreme high temperature events in inland of the Tokyo metropolitan area, Japan, during the past 22 years. Int J. Climatol. 34, 3926–3938 (2014).

    Article 

    Google Scholar
     

  • Takane, Y., Kusaka, H. & Kondo, H. Investigation of a recent extreme high-temperature event in the Tokyo metropolitan area using numerical simulations: the potential role of a ‘hybrid’ foehn wind. Q J. R. Meteorol. Soc. 141, 1857–1869 (2015).

    Article 

    Google Scholar
     

  • Fujibe, F. Urban warming in Japanese cities and its relation to climate change monitoring. Int J. Climatol. 31, 162–173 (2011).

    Article 

    Google Scholar
     

  • Tewari, M., Salamanca, F., Martilli, A., Treinish, L. & Mahalov, A. Impacts of projected urban expansion and global warming on cooling energy demand over a semiarid region. Atmos. Sci. Lett. 18, 419–426 (2017).

    Article 

    Google Scholar
     

  • Bowler, D. E., Buyung-Ali, L., Knight, T. M. & Pullin, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc. Urban Plan 97, 147–155 (2010).

    Article 

    Google Scholar
     

  • Terada, M., Nagata, T. & Kobayashi, M. “Mobile spatial statistics” supporting development of society and industry—population estimation technology using mobile network statistical data and applications. NTT Docomo Tech. J. 14, 10–15 (2013).


    Google Scholar
     

  • Matsubara, N. Grasping dynamic population by “Mobile Spatial Statistics”: from the viewpoint of tourism disaster and stranded persons. J. Info Process. Manag. 60, 493–501 (2017).


    Google Scholar
     

  • Skamarock, W. C. et al. A description of the Advanced Research WRF version 3. NCAR Technical Note NCAR/TN–4751STR, 113. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (NCAR, 2008).

  • Kikegawa, Y., Tanaka, A., Ohashi, Y., Ihara, T. & Shigeta, Y. Observed and simulated sensitivities of summertime urban surface air temperatures to anthropogenic heat in downtown areas of two Japanese Major Cities, Tokyo and Osaka. Theor. Appl. Climatol. 117, 175–193 (2014).

    Article 

    Google Scholar
     

  • Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article 

    Google Scholar
     

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. & Clough, S. A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102, 16663–16682 (1997).

    Article 

    Google Scholar
     

  • Chou, M.-D. & Suarez, M. J. An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Technical Memorandum. 104606, 85 (1994).

  • Matsui, T. et al. Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations. Clim. Dyn. 55, 193–213 (2020).

    Article 

    Google Scholar
     

  • Thompson, G., Field, P. R., Rasmussen, R. M. & Hall, W. D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 136, 5095–5115 (2008).

    Article 

    Google Scholar
     

  • Mellor, G. L. & Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851–875 (1982).

    Article 

    Google Scholar
     

  • Janjić, Z. I. The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 122, 927–945 (1994).

    Article 

    Google Scholar
     

  • Janjić, Z. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Off. Note 437, 61 (2002).


    Google Scholar
     

  • Chen, F. & Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Weather Rev. 129, 569–585 (2001).

    Article 

    Google Scholar
     

  • Kusaka, H. & Kimura, F. Thermal effects of urban canyon structure on the nocturnal heat island: Numerical experiment using a mesoscale model coupled with an urban canopy model. J. Appl Meteorol. Climatol. 43, 1899–1910 (2004).

    Article 

    Google Scholar
     

  • Chen, F. et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J. Climatol. 31, 273–288 (2011).

    Article 

    Google Scholar
     

  • Ihara, T., Kikegawa, Y., Asahi, K., Genchi, Y. & Kondo, H. Changes in year-round air temperature and annual energy consumption in office building areas by urban heat-island countermeasures and energy-saving measures. Appl. Energy 85, 12–25 (2008).

    Article 

    Google Scholar
     

  • Kikegawa, Y. et al. Validation of a numerical urban weather forecasting model coupled with a building energy model in terms of the reproducibility of solar irradiance and electricity demand. J. JSCE Ser. G Envir. Res. 73, 57–69 (2017).

    Article 

    Google Scholar
     

  • Takane, Y. et al. Future projection of electricity demand and thermal comfort for August in Nagoya city by WRF-CM-BEM. J. Environ. Engine, AIJ 80, 973–983 (2015).

    Article 

    Google Scholar
     

  • Nakajima, K., Takane, Y., Fukuba, S., Yamaguchi, K. & Kikegawa, Y. Urban electricity–temperature relationships in the Tokyo Metropolitan Area. Energy Build. 256, 111729 (2022).

    Article 

    Google Scholar
     

  • Japanese Ministry of Land, Infrastructure, Transport and Tourism. Nation-wide Road Traffic Condition Study (Road Traffic Census), Fiscal 1999 (2001).

  • Environment Agency of Japan. The Survey Result on Automobile Exhaust Unit Rate and Total Amounts (1998).

  • link

    By admin

    Leave a Reply

    Your email address will not be published. Required fields are marked *